King Fahd University of Petroleum & Minerals

Department of Information and Computer Science

Sample Solution

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
CLO	1	1	1	1	1	1	1	1	1	1	1	3	3	3	3	3	3	2	2	2	
Max	5	5	5	5	5	5	5	5	4	4	4	3	3	3	3	3	3	10	10	10	100
Earned																					

Question 1: [5 Points]

What is the contrapositive of the conditional statement: "If it is hot, I will go swimming"?

If I will not go swimming, it is not hot.

Question 2: [5 Points]

Show that if $p \oplus p$ is a tautology, a contradiction, or a contingency.

p	p	$p \oplus p$
F	F	F
Т	Т	F

It is a contradiction

Question 3: [5 Points]

Are these system specifications consistent? Why? Why not?

- a. If students can access the file system, then they can save new files.
- b. Whenever the operating system is being upgraded, students cannot access the file system.

c. If students cannot save new files, then the operating system is not being upgraded. Let

p = "students can access the file system"

q = "they can save new files"

r = "the operating system is being upgraded" We have

a. $p \rightarrow q$ b. $r \rightarrow \neg p$ c. $\neg q \rightarrow \neg r$ These specifications are consistent if we find values for *p*, *q*, and *r* that makes the system true. $(p \rightarrow q) \land (r \rightarrow \neg p) \land (\neg q \rightarrow \neg r)$

When p and r are false. In addition, when p is false, q is true and r true. Also when p and q are true and r is false.

р	q	r	$(p \rightarrow q) \land (r \rightarrow \neg p) \land (\neg q \rightarrow \neg r)$
F	F	F	Т
F	F	Т	F
F	Т	F	Т
F	Т	Т	Т
Т	F	F	F
Т	F	Т	F
Т	Т	F	Т
Т	Т	Т	F

Question 4: [5 Points]

Recall inhabitants of the island of knights and knaves. You encounter two people, *A* and *B*. *A* says "*B* is a knave" and *B* says "The two of us are both knights." Determine what A and B are.

A is a knight and B is a knave.

Question 5: [5 Points]

Show that if $(\neg s \land (r \rightarrow s)) \rightarrow \neg r is$ a tautology, a contradiction, or a contingency.

r	8	$(\neg s \land (r \rightarrow s)) \rightarrow \neg r$
F	F	Т
F	Т	Т
Т	F	Т
Т	Т	

It is a tautology

Question 6: [5 Points]

Determine whether the compound proposition $(r \rightarrow s) \land (\neg r \rightarrow \neg s) \land (\neg r \rightarrow \neg s)$ is satisfiable.

r	8	$(r \rightarrow s) \land (r \rightarrow \neg s) \land (\neg r \rightarrow \neg s) \land (\neg r \rightarrow \neg s)$							
F	F	F							
F	Т	F							
Т	F	F							
Т	Т	F							

As there is no combinations of r and s that makes the proposition true, it is not satisfiable.

Question 7: [5 Points]

The domain of the propositional function Q(x) consists of the integers 1, 2, 3, 4, and 5. Express the statement

 $\forall x ((x \neq 3) \rightarrow Q(x)) \lor \exists x \neg Q(x)$

without using quantifiers, instead using only negations, disjunctions, and conjunctions.

 $Q(1) \land Q(2) \land Q(4) \land Q(5) \lor \neg Q(1) \lor \neg Q(2) \lor \neg Q(3) \lor \neg Q(4) \lor \neg Q(5)$

Question 8: [5 Points]

Translate the statement:

"Nothing is in the correct place and is in excellent condition"

into a logical expression using predicates, quantifiers, and logical connectives.

Let C(x) = "x is in the correct place" and E(x) = "x is in excellent condition"

 $\forall x \neg (C(x) \land E(x))$

Or

 $\neg \exists x \left(C(x) \land E(x) \right)$

Or equivalents.

Question 9: [4 Points]

Let P(x) be "x is a baby" and Q(x) be "x is logical". Suppose that the domain consists of all people. Express the statement "Babies are illogical" using quantifiers; logical connectives; and P(x) and Q(x).

 $\forall x \left(P(x) \to \neg Q(x) \right)$

Question 10: [4 Points]

Suppose the domain of P(x, y) consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Express the statement $\exists x \forall y P(x, y)$ using disjunctions and

conjunctions.

 $(P(1,1) \lor P(2,1) \lor P(3,1)) \land (P(1,2) \lor P(2,2) \lor P(3,2)) \land (P(1,3) \lor P(2,3) \lor P(3,3))$

Question 11: [4 Points]

Rewrite the following statement so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).

 $\neg \exists y(Q(y) \land \forall x \neg R(x, y)).$

 $\forall y (\neg Q(y) \lor \exists x R(x, y)).$

Question 12: [3 Points]

What is the cardinality of $\{a, \{a\}, \{a, \{a\}\}\}$?

3

Question 13: [3 Points] If A and B are sets then what is the value of $A \cap (B - A)$? Question 14: [3 Points] Is the following statement **TRUE** or **FALSE**? $\{x\} \subseteq \{x\}$ and $\{x\} \in \{x\}$. **FALSE** Question 15: [3 Points] Is the following statement TRUE or FALSE? If $A = \{a, b, c\}, B = \{x, y\}$, and $C = \{0, 1\}$ then $C \times B \times A = C \times A \times B$. **FALSE** Question 16: [3 Points] Is the following statement **TRUE** or **FALSE**? RULES OF INFERENCE If *A* and *B* are sets then $A - B \subseteq A$. р TRUE (Addition) $p \lor q$ Question 17: [3 Points] $p \wedge q$ Is the following statement TRUE or FALSE? (Simplification) р If A, B, and C are sets then $(A - B) - C \subseteq A - C$. р **TRUE** qQuestion 18: [10 Points] (Conjunction) $p \wedge q$ Given the premises: $p \rightarrow (q \land r), s \rightarrow r$, and $r \rightarrow p$. р $p \rightarrow q$ show that $s \rightarrow q$. (Modus ponens) q $\neg q$ [1] $p \rightarrow (q \land r)$ Premise $p \rightarrow q$ $[2] s \rightarrow r$ Premise (Modus tollens) $\neg p$ [3] $r \rightarrow p$ Premise $p \rightarrow q$ [4] $r \rightarrow (q \land r)$ Hypothetical syllogism of [3] & [1] $q \rightarrow r$ [5] $(r \rightarrow q) \land (r \rightarrow r)$ The equivalence of [4] (Hypothetical syllogism) $p \rightarrow r$

[6] $r \rightarrow q$ Simplification of [5]

[7] $s \rightarrow q$ Hypothetical syllogism of [2] & [6]

 $p \lor q$

(Disjunctive syllogism)

(Resolution)

 $\neg p$

 $\frac{q}{p \lor q}$ $\neg p \lor r$

 $\therefore q \lor r$

Question 19: [10 Points]

Prove that the difference of an even integer minus an odd integer is odd. Use direct proof.

Given n = a - b where *a* is an even integer (a = 2k) and *b* is an odd integer (b = 2m + 1), we want to prove that *n* is odd.

n = a - b, a is even and b is odd= 2k - (2m + 1)= 2k - 2m - 1= 2k - 2m - 1 + (1 - 1)= 2k - 2m - 2 + 1= 2(k - m - 1) + 1= 2j + 1 where j = k - m - 1So *n* is equal to 2j + 1 where *j* is an integer number. This proves that *n* is odd.

Question 20: [10 Points]

Using membership table, Prove that $(A_1 \cap A_2) \cup B = (A_1 \cup B) \cap (A_2 \cup B)$, for every sets A_1, A_2, B .

A_1	A_2	B	$(A_1 \cap A_2)$	(A	$(A_1 \cap A_2) \cup B$		(<i>A</i> ₁∪ <i>B</i>)	(<i>A</i> ₂∪ <i>B</i>)	(A ₁ U	$(A_1 \cup B) \cap (A_2 \cup B)$	
0	0	0	0		0		0	0		0	
0	0	1	0		1		1	1		1	
0	1	0	0		0		0	1		0	
0	1	1	0		1		1	1		1	
1	0	0	0		0		1	0		0	
1	0	1	0		1		1	1		1	
1	1	0	1		1		1	1		1	
1	1	1	1				1	1			

The membership table for these combinations of sets is shown. This table has eight rows. Because the columns for $(A_1 \cap A_2) \cup B$ and $(A_1 \cup B) \cap (A_2 \cup B)$ are the same, the identity is valid.